Inverse semigroups with rational word problem are finite
نویسنده
چکیده
This note proves a generalisation to inverse semigroups of Anisimov's theorem that a group has regular word problem if and only if it is finite, answering a question of Stuart Margolis. The notion of word problem used is the two-tape word problem – the set of all pairs of words over a generating set for the semigroup which both represent the same element.
منابع مشابه
Deciding Word Problems of Semigroups using Finite State Automata
We explore natural classes of finitely generated semigroups that have word problem decidable by synchronous or asynchronous two-tape finite state automata. Synchronous two-tape automata decide regular word problems and asynchronous automata decide rational word problems. We argue that asynchronous two-tape automata are a more suitable choice than synchronous two-tape automata and show that the ...
متن کاملOn the Complexity of the Word Problem of Automaton Semigroups and Automaton Groups
In this paper, we study the word problem of automaton semigroups and automaton groups from a complexity point of view. As an intermediate concept between automaton semigroups and automaton groups, we introduce automaton-inverse semigroups, which are generated by partial, yet invertible automata. We show that there is an automaton-inverse semigroup and, thus, an automaton semigroup with a PSpace...
متن کاملHnn - Extensions of F Inite I Nverse S Emigroups
THE concept of HNN-extensions of groups was introduced by Higman, Neumann and Neumann in 1949. HNN-extensions and amalgamated free products have played a crucial role in combinatorial group theory, especially for algorithmic problems. In inverse semigroup theory there are many ways of constructing HNNextension in order to ensure the embeddability of the original inverse semigroup in the new one...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1311.3955 شماره
صفحات -
تاریخ انتشار 2013